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       Abstract 
 

Workflows, also known as process models, are essential in many science and engineering 

fields.  Workflows express compositions of individual steps or tasks that assembled together 

account for various aspects of an overall process. When workflows include dozens of 

components and many links among them, the creation of valid workflows becomes 

challenging since users have to track many interdependencies and constraints.  This paper 

describes principles for assisting users to create valid workflows that are based on two 

knowledge acquisition systems that we have developed.  A shared goal in these projects was to 

enable end users who do not have computer science backgrounds, such as biologists, military 

officers, or engineers, to create valid end-to-end process models or workflows.  Our approach 

exploits knowledge-rich descriptions of the individual components and their constraints in order 

to validate the composition, and uses artificial intelligence planning techniques in order to 

systematically verify formal properties of valid workflows.  Both systems analyze partial 

workflows created by the user, determine whether they are consistent with the background 

knowledge that the system has, notifies the user of issues to be resolved in the current 

workflow, and suggests to the user what actions could be taken to correct those issues.  

 

 



 2 

1. Introduction   

Workflows, also known as process models, are essential in many science and engineering fields 

[Malone et al., 2003; Taylor et al 2006; Tissot and Gruninger 1999].  Workflows express compositions of 

individual steps or tasks that assembled together account for various aspects of an overall process.  

Workflows provide a computational mechanism to manage the complexity of the interdependencies 

among tasks as well as their individual requirements.  Workflows can be used to track and coordinate 

tasks in human organizations [Malone et al., 2003].  Our focus is on workflows that can be used to 

manage computations to carry out scientific simulations or complex data analyses.  For example, 

workflows have been used to simulate seismic hazard [Maechlin et al., 2005; Gil et al., 2007; Deelman et 

al., 2006], analyze astronomy data [Deelman et al., 2005], and in a variety of biomedical applications 

[Voit 2000; Wroe et al., 2004; Kim et al., 2007].  In some cases, workflows are composed of distributed 

web services.  In other cases workflows are composed of computations that can be submitted for 

execution in remote locations.  Workflow systems can manage computations in distributed environments 

[Churches et al 2005; Altintas et al 2004] and with very large datasets [Deelman et al 05; Deelman et al 

2006]. 

Because workflows can be very complex, a variety of workflow editors have been developed to 

enable users to assemble workflows graphically.  These editors allow the user to browse through a library 

of components, select components for the workflow at hand, and link component inputs and outputs to 

express their interdependencies.  However, these tools lack the assistance needed to support users in 

creating valid workflows.  When workflows include dozens of components and many links among them, 

it becomes challenging for users to create valid workflows. 

We have developed two knowledge acquisition tools to assist users in creating and validating 

workflows in two diverse application domains: CAT (Composition Analysis Tool) that assists users in 

composing computational workflows [Kim et al., 2004; Kim and Gil 2004], and KANAL (Knowledge 

ANALysis) that assists users in creating and validating process models in biology [Kim and Gil 2001]. A 

shared goal in these applications was to develop knowledge acquisition tools that enable end users who do 

not have computer science backgrounds, such as biologists, military officers, or building engineers, to create 

valid end-to-end process models or workflows.  The two systems support different applications with 

different types of workflows and their underlying knowledge representations and supporting reasoning 

capabilities are diverse.  In spite of these differences, these systems followed the same approach and 

incorporated similar principles: 
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1) exploit knowledge-rich descriptions of the individual components and their constraints in order to 

validate the composition  

2) exploit artificial intelligence planning techniques in order to systematically verify formal properties 

of valid workflows 

Both systems analyzed partial workflows created by the user, determined whether they were 

consistent with the background knowledge that the system had, notified the user of issues to be resolved in 

the current workflow, and suggested to the user what actions could be taken to correct those issues.  

This paper presents techniques and principles that we have found to be central in helping end 

users author and validate workflows interactively. We begin with our approach in developing CAT 

(section 3) and then KANAL (section 4). In presenting each system, we start describing supporting 

knowledge bases that include two ontologies: ontology of data objects or entities (e.g. virus, rupture) and 

ontology of process components (e.g. move action, wave propagation). We show how these ontologies are 

used in reasoning about process models or workflows and about user actions involved in entering process 

models or workflows.  We then present a set of desirable properties that we have developed based on 

existing planning techniques, and how we use them in validating process models and workflows against 

the ontologies. We discuss the underlying principles in both CAT and KANAL used to validate 

workflows and to assist users. Finally, we discuss our future work in developing additional support for 

interactive process model authoring and validation. 

2. Motivation 

Figure 1 shows a sketch of a workflow for seismic-hazard analysis.  Scientists have developed 

many computational components (called models) that can be used to simulate various aspects of an 

earthquake: the rupture of a fault and the ground shaking that follows it, the shape of the wave as it 

propagates through different kinds of soil, the vibration effects on a building structure, etc. The models 

are complex, heterogeneous, and come with many constraints on their parameters and their use with other 

models. To create workflows composed of these models, users may follow different strategies and design 

the workflow in many different ways.   One way is to think about it is in terms of simulation models. The 

users know they need two main steps: first, simulation of fault rupture; then, simulation of the wave 

propagation. They may prefer physics-based models or empirical models, and are a bit familiar with the 

scientific community and the methodology involved in creating each model. But another way to think about 

the workflow is in terms of the particular data the users want to look at. Sometimes they want the wave's 

velocity at the site, or its acceleration. Sometimes they want the probability of an earthquake above a certain 

magnitude affecting that site. Different models provide different types of results. Another way to think about  
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Figure 1. A computational workflow for earthquake simulation analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Example process model: a virus invading a cell. 

 

the workflow is in terms of the situation the users want to simulate. The engineer may start with a specific 

site, then look at its characteristics like basin depth, and then select models that incorporate these 

characteristics. Generally, users need a system that is flexible enough to support the various strategies that 

they may take. In addition, in many cases end users have requirements and preferences that often depend on 

how the workflow unfolds and that cannot be specified beforehand.  For example, users may not know 
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which wave propagation model is appropriate until the distance from the fault rupture to the location is 

determined.  

Figure 2 shows a portion of a process model that was created by a biologist. It describes a general 

model of how a virus invades a eukaryotic cell.  The model is composed of generic components that are 

predefined in a library, such as Move and Attach.  There are different connections among the steps, 

including decomposition links between steps and sub-steps, and ordering constraints. Each step has 

several role assignments to the objects that play certain roles for the step, such as the Virus is the agent of 

the Penetrate step. This type of process model tends to have complex interactions among the steps; for 

instance, the Attach step (the Virus is attaching to the Eucaryotic-Plasma-Membrane) enables the 

following Penetrate step (the Virus is penetrating into the Cell). To be able to specify such a model, the 

user has to select each of the individual steps and connect them appropriately. Even in process models or 

workflows of small size, the number of steps and connections between them is large enough that users 

would benefit from the assistance of intelligent acquisition tools that help them specify process models or 

workflows correctly. For example, the user may forget to specify the links between the steps, or may 

specify wrong links. There are many constraints that users need to keep track of, including validity of the 

links and the steps added. 

These examples shared requirements for supporting the creation and validation of workflows are: 

• keep track of details to ensure that a correct process model is formulated:  Authoring process 

models or workflows, as any user-driven process, is a task prone to errors and inconsistencies. As users 

edit the process model by adding components, linking their inputs and outputs, etc., there are many 

constraints that need to be tracked in terms of the validity of the links and the steps added.  

• support mixed-initiative interaction: Users can drive the process when they have a clear idea of what 

to specify about the process model, whether they follow a top-down or a bottom-up approach, start from 

the desired outcome to initial steps or from available data, etc. At any point in time, the system should 

be able to take a partially specified process model or workflow from the user and make suggestions 

about how to complete it. 

• systematically generate and manage all of the choices throughout the authoring process: At any 

point during the authoring, there may be many choices to make: add a step (and if so which one), add a 

link, replace an existing step with a more appropriate one, etc. Ideally, all these possible choices should 

be generated systematically, and they should be presented according to how each contributes to the 

configuration of the process model.  
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3. CAT: Interactive Composition of Workflows   

This research was motivated by the need of scientists and engineer to create valid workflows for 

seismic hazard analysis, an application where using an invalid model or workflow can lead to dire 

consequences.  Seismic hazard analysis enables building engineers to estimate the impact of potential 

earthquakes at a construction site and on their building designs. Scientists have developed many models 

that can be used to simulate various aspects of an earthquake: the rupture of a fault and the ground 

shaking that follows, the shape of the wave as it propagates through different kinds of soil, the vibration 

effects on a building structure, etc. Some of these models are based on physics; others are empirical based 

on historical data on past earthquakes. The models are complex, heterogeneous, and come with many 

constraints on their parameters and their use with other models.  If a model is used in simulations where 

those constraints are violated, an erroneous seismic hazard would be estimated and therefore a 

construction may not be designed appropriately.  Our goal is to enable unsophisticated users, such as 

building engineers and safety officials, to create end-to-end workflows composed of complex scientific 

models that are valid for the particular context in which they are used.  

Whereas a workflow represents a flow of data products among executable components, a 

workflow template is an abstract specification of a workflow, with data types as placeholders for actual 

data products, and describing which components are used and how their parameters are connected. Our 

work focuses on workflow templates rather than workflows since users/scientists often create a workflow 

template and use and reuse the same template with different choices of data such as when they need to 

analyze potential seismic hazards on different sets of sites. A workflow that can be executed is created by 

binding actual data to data types in a workflow template. The components that are introduced are 

represented as workflow template steps which we simply call steps whenever the interpretation is clear by 

context. In a workflow template, an output parameter of a step can be linked to an input parameter of 

another step, so that data can pass between the steps.  A link is a matched pair, consisting of one output 

parameter and one input parameter.   

A workflow template includes initial input data types, which are linked to some steps’ input 

parameters.  All initial input data is assumed to be available before the workflow’s computation starts. A 

workflow template should contain at least one end result data type, which is a placeholder for the actual 

data that the workflow is meant to produce. In CAT, input data and end results are handled uniformly as 

any other steps, the former as steps with no input parameters (initial-input steps) and the latter as steps 

with no outputs (end-result steps).  That is, each user-given input object type is represented as the output 

parameter of an initial-input and each end result type is represented as an input parameter of an end-result. 
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Figure 3.  An example CAT Knowledge Base. 

 

3.1 Supporting knowledge base: representing entities and workflow components  

  This section describes how we represent workflow components and data. Figure 3 shows a 

portion of a sample CAT Knowledge Base (KB). Here we use an example from a travel planning domain 

for readability. In the KB, there is a hierarchy of data types.  

  A workflow component represents an executable software program and is represented in terms of 

its input and output parameters, each with a data type expressed in the KB ontology. For example, 

component Car-Rental-at-Airport has a corresponding executable program. The component takes an 

Airport (as arrival-place) and a Date (as arrival-date) as input, and produces a Car-Reservation. We 

assume that the outputs of components produce new information and there are no deletions of existing 

information. Abstract components may have more abstract types of parameters. For example, a more 

abstract component Car-Rental has an input parameter arrival-place with type Location instead of Airport.  

CAT uses OWL (the W3C Ontology Web Language standard) [OWL, 2008] for representing data 

types, but can access different KBs using the following generic KB access functions: 

• KB-components(): returns a set of available components (including abstract ones) defined in the KB. 

• KB-data-types(): returns a set of data types defined in the KB. 

• KB-input-parameters(c): returns input parameters of component c. 
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• KB-output-parameters(c): returns output parameters of component c. 

• KB-executable(c): returns false iff c is not an executable component.  

• KB-range (c, p): returns a class defined (or derived) as the range of parameter p of component c. Here 

we assume that there is only one class that represents the range of the given class component and 

parameter. 

• KB-subsumes (t1, t2): returns true iff  KB class t1 subsumes KB class t2.   

• KB-specializations(c,r,v): returns subconcepts of c, optionally where value for role r is v. 

• KB-component-with-output-data-type(t): returns a set of components c ∈ KB-components() s.t. ∃ p 

∈ KB-output-parameter(c) ∧ KB-subsumes(t, KB-range(c,p)). 

• KB-component-with-input-data-type(t): returns a set of components c ∈ KB-components() s.t. ∃ p ∈ 

KB-input-parameters(c) ∧ KB-subsumes(KB-range(c,p),t). 

  For example, for the abstract component Car-Rental: 

  KB-input-parameters (Car-Rental) = {arrival-date, arrival-place} 

  KB-range (Car-Rental, arrival-date) = Date 

  Using the KB, CAT can reason about the semantics of each parameter and component to help 

users construct correctly formulated dataflow links in their workflows.  Because the component ontology 

describes abstract component types as well as specific components, users can start from a high-level 

description of what they want without knowing the details of what actual components are available. We 

often find that users have only partial description of what they want initially, and our tool can help users 

find appropriate ones by starting with a high-level component type and then specializing it. The ontology 

of data types can be used in a similar way when users have incomplete or high-level description of the 

desired outcome.  These ontologies also play a key role in relating components in workflows, detecting 

gaps and errors, and producing suggestions. For example, a link between an output of a component to an 

input of another can be checked to see whether the output type is subsumed by the input data type. The 

hierarchy of component types can guide the user to specialize an abstract-level component into one he/she 

likes. The next section describes how the KB contents are used within an algorithm that validates 

workflows and assists users to fix any errors or gaps. 

3.2 Composition of workflows  

The analysis of partial workflows created by the user is done using an AI planning framework 

[Nau 2007].  Formal analyses of planning algorithms define some desirable properties of plans, such as 

justifiability  and  correctness [Tate, 1996,  Kambhampati et al., 1995, Yang, 1990].  Generative  planners  
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Figure 4. A simple workflow template. 

 

[Wilkins, 1988; Sacerdoti, 1977; Tate, 1977] use critics that detect problems in the plans that they 

generate while planning. Some planning approaches have been used in composing workflows 

automatically [Blythe et al., 2003, McDermott 2002, McIlraith and Son 2001, Lansky et al., 1995, Chien 

et al., 1996]. While automating the creation of the workflows is not desirable, as users prefer to specify 

what workflow template must be used for the analysis, automatic planning approaches are not always 

appropriate. However, we use these general properties of plans to formally describe valid workflows.   

  Each workflow component is treated as a step in the plan, the inputs of the component are the 

preconditions of that step and the outputs are its effects, the links between steps are treated as causal links, 

any data provided by the user form the initial state, and the desired end results are the goals for the 

planning problem.  There are no negative effects (deletions) as described above.  Links in a workflow 

represent dataflow between input and output parameters of the steps. 

  Formally, a workflow template wt is a tuple <S, L, I, G> where S is a set of steps, L is a set of 

links, I is a set of initial-input steps and G is a set of end-result steps. Each step is a tuple <c, id> where c 

is a component in the KB and id is an identifier for the step. Each link is a tuple <so,po,si,pi> where po is 

an output parameter of a step so ∈ S, and pi is an input parameter of si ∈ S. In our current framework, a 

workflow is a directed acyclic graph: components are nodes and links are directed edges. For example, 

the link between flight-arrival-date output parameter of Reserve-Flight step and arrival-date input 

parameter of Car-Rental-by-Airport step in Figure 4 can be represented as <<Reserve-Flight,s1>, flight-

arrival-date, <Car-Rental-by-Airport,s2>, arrival-date>. For a step that is not an initial input or an end 

result, the input and output parameters of the step are the input and output parameters of the component.  

For example, input-parameters(<c, s_id>) = KB-input-parameters(c). Also, range (<c, s_id>, p) = KB-

range(c,p). 
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User Activities for Workflow Creation 

  Figure 5 shows the web-based interface of CAT. On the left side are components and links 

currently in the workflow. The right side shows current errors or gaps in the workflow, as well as 

suggestions for the selected error.  

  The composition process is user-driven; at any time, the user may perform one of four primitive 

actions:  

• AddStep(wt,s): Given a workflow template wt = <S, L, I, G> and c ∈components(),  w becomes < S ∪{<c, 

s_id>}, L, I, G>.  where s_id is a unique step identifier generated by the system. 

• RemoveStep(wt,s): Given a workflow template wt=<S, L, I, G> and s ∈ S, wt becomes < S - {s}, L, I, G>.   

• AddLink(wt,s1,p1,s2,p2): Given a workflow template wt=<S, L, I, G>, s1 ∈ S, p1∈ output-parameters (s1), s2 

∈ S, and p2∈ input-parameters (s2), wt becomes <S, L  ∪ {<s1,p1,s2,p2>}, I, G>. 

• RemoveLink(wt, l): Given a workflow template  wt=<S, L, I, G>, l ∈ L, wt becomes < S, L- {l}, I, G>. 

  Adding or removing initial-input and end-result steps is handled similarly to adding or removing 

regular steps. Each action taken by the user (add/remove component, add/remove link) is akin to a 

refinement operator in plan generation. However, while automatic systems can explore the space of plans 

systematically and guarantee that the final plans are valid, interactive composition requires an approach 

that lets the user decide what parts of the space to explore and that can handle incorrect partial workflow 

templates. 

  In addition to these primitive actions, CAT makes use of “composite” actions in order to make 

the composition process more coherent and efficient. Each composite action is an ordered sequence of the 

four primitive actions.  Currently, we have four composite actions: AddAndLinkStep, 

RemoveStepAndLinks, SpecializeStep (remove existing step and add a new one with a more specialized 

component), and InterposeStep (remove an existing link, add a step, and add two links between the output 

parameter and input parameter of the removed link).   

3.3 Desirable properties of a workflow template 

  This section first introduces some features of workflow template steps and links, and defines 

desirable properties that CAT uses in verifying user-entered templates.   
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• Purposeful: A workflow template should contain at least one end-result step. 

  ∀ wt  <S, L, I, G>, purposeful (wt) iff ∃ G ≠ φ. That is.  Even though CAT allows users to construct sketches 

of workflows without specifying desired end results, to complete a workflow, users need to provide the kinds of 

outcome they expect. 

• Grounded: To be able to execute a given workflow template all the steps introduced to the workflow 

template should be specialized into executable ones. 

     ∀ wt <S, L, I, G>, grounded (wt)  iff ∀ s  ∈ S, executable(s)  

• Satisfied: All the inputs should be provided. 

    ∀ wt <S, L, I, G>,  satisfied (wt)  iff ∀ s  ∈ S ∪  G, satisfied(s).  

• Consistent: All the input/output links are valid in terms of the data types used. 

    ∀ wt <S, L, I, G>, consistent (wt) iff ∀ link l ∈ L, consistent (l).   

• Justified: All the steps are used in achieving some goals.  

     ∀ wt <S, L, I, G>, justified (wt)  iff ∀ s  ∈ S, justified (s).  

• Well-Formed: All the steps and links are valid. 

    ∀ wt <S, L, I, G>, well-formed  (wt) iff ∀ s  ∈ S, valid (s) ∧ ∀ l ∈ L, valid (l). 

• Acyclic: No cycles are included. 

     ∀ wt <S, L, I, G>, acyclic  (wt) iff ¬(∃ s  ∈ S, connected(s, s)).   

• Parsimonious: Redundant links should be avoided. 

     ∀ wt <S, L, I, G>, parsimonious (wt)  iff ¬(∃ l ∈ L, redundant (l)).    

                             Table 1:  Desirable Properties of Workflow Templates. 

  We define the following set of properties of steps and links: 

• Satisfied parameter and statisfied step: wt = <S, L, I, G> , si ∈ S, ∀p ∈ input-parameters (si), satisfied (p)  

iff ∃ a link <so,po,si,pi> ∈ L s.t. pi = p.  That is, an input parameter is satisfied when it is linked to any output 

parameter of a step. A step is satisfied if all its input parameters are satisfied.  

• Consistent link: wt <S, L, I, G>,  l <so,po,si,pi> ∈ L, consistent (l) iff KB-subsumes (range(si,pi), 

range(so,po)).  

• Valid step: wt <S, L, I, G>,  <c, s_id> ∈ S, valid(s) iff c ∈ KB-components(). 

• Valid link: wt <S, L, I, G>,  l <so,po,si,pi> ∈ L, valid(l) iff po ∈ output-parameters (so) ∧ pi ∈ input-

parameters (si). 

• Executable step: wt  <S, L, I, G>, <c, s_id> ∈ S, executable(s) iff KB-executable(c). 

• Connected steps: ∀ wt  <S, L, I, G>, s1 ∈ S ∪ I, c1 , s2 ∈ S  ∪ G,  connected (s1 , s2) iff (∃ link l <so,po,si, pi> 

∈ L where so = s1 ∧  si = s2) or    (∃ step s3 ∈ S  s.t. connected(s1, s3) ∧  connected(s3, s2)).  That is, there exists 

a (directional) chain of links that connects s1 to s2 in the workflow template.  

• Redundant link: ∀ wt  <S, L, I, G>,  l <so,po,si,pi> ∈ L, redundant(l)  iff (∃ link l2 <so’,po’,si’, pi’> ∈ L s.t. l 

≠ l2 ∧  si =  si’ and pi =  pi’). That is, more than one link leads to the same input parameter. 
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• Justified step: ∀ wt <S, L, I, G>, s ∈ S, justified(s) iff s ∈ G ∨  ∃ s2 ∈ G s.t. connected(s , s2).  Otherwise, S 

is unjustified.  Currently, the Car-Rental-by-Airport step in Figure 4 is not justified. 

 

  For example, in Figure 4, the steps <Reserve-Flight,s1> and <Car-Rental-by-Airport, s2> are not 

satisfied yet. The initial-input step with output parameter Date-Time is connected to the end-result Flight-

Res-# via the Reserve-Flight step. 

  Table 1 lists a set of desirable properties of workflow templates based on these properties of steps 

and links. When all the desirable properties are satisfied, the workflow template is considered correct. 

Although CAT relies on static analysis of workflow templates instead of dynamic simulation, and actual 

checks made are different, we can map some of these properties to relevant KANAL checks, as described 

below.  

The properties can help relate the workflow templates generated by a user to templates that an 

automated approach could generate. Workflows that contain errors of inconsistency and redundancy 

would never be generated automatically. Automated approaches would normally form (partial) workflow 

templates that are well-formed, purposeful, justified, consistent and parsimonious.  

3.4 ErrorScan algorithm 

Based on the properties defined above, we have developed the ErrorScan algorithm. ErrorScan 

relies on a static analysis of ‘scanning’ the composed workflow template instead of results from dynamic 

simulations. Using the desirable properties, it produces a report on the kinds of problems that made the 

workflow template not correct. Each deviation from these properties, by the workflow or by one of its 

elements is reported as an error or a warning to the user. Based on the analysis of user actions shown above, 

the algorithm also generates specific suggestions to the user for how to fix each error found. Also, any fix 

suggested by CAT is an ordered sequence of the primitive actions above. The algorithm is shown in Table 

2. The algorithm consults the knowledge base to check the properties (e.g., the consistency of a link based 

on the parameter type definitions in the ontologies), and to generate suggestions (e.g., if an input parameter 

is not satisfied, ErrorScan will return from the knowledge base a list of components that have outputs that 

are subsumed by the input parameter). If ErrorScan does not generate any errors or warnings for a given 

workflow template, the workflow is purposeful, grounded, satisfied, consistent, justified, well-formed, 

acyclic, parsimonious, and therefore it is a correct workflow template. If the workflow template is not 

justified, not parsimonious, or cyclic (i.e., capable of producing an end result but possibly inefficient), the 

system produces warnings instead of error messages. Many scientific workflows form directed acyclic 

graphs and we provide warnings in case a cycle is unintended.   
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Table 2:  The ErrorScan algorithm: Verifying user entered workflow templates 

  The algorithm filters its choice of suggestions, in that each suggestion must be a sequence of 

actions that, as a whole, fixes more errors than it causes. The suggestions are additive or corrective, i.e., 

the system will not suggest removing a valid component, though the user can always remove components 

on their own accord if they were added in error.   The algorithm also incorporates heuristics for ordering 

errors as they appear in the interface.  Errors are ordered most recent first (i.e., generated by the most 

recent user actions).  Errors are then ordered by the more serious errors before warnings.   

  

ErrorScan 
 

Input: a (partial) workflow template wt <S, L, I, G> 
Output: list of errors and corresponding fix suggestions 
I. If wt is not purposeful, create an Error. 
      Suggestions: define an end-result e using data types defined in the KB. 
II. If wt is cyclic, create Warning. 
      Suggestions: for some links l in the cycle, RemoveLink (l). 
III. For each step s in wt: 
      a. If s is not justified, create a Warning. 
              Suggestions: ∀p ∈ output-parameters (s), for a step sj in wt s.t. 
               pj ∈ input-parameters(sj), ∧ KB-subsumes(pj,p),  AddLink (s,p,sj,pj).  
      b. If  the step <c, s_id> is not executable, create an Error.  
              Suggestions: ∀ ci ∈ KB-specializations(c),  SpecializeStep(s, ci).  
      c. For each pi ∈ input-parameters(s): 
             If pi is not satisfied, create an Error. 
  Suggestions: ∀ sj ∈ S with output parameter pj s.t. KB-subsumes(range(s, pi),range(sj,pj)) 
                     AddLink(sj,pj,s, pi). 
  Suggestions: ∀ cj ∈ KB-component-with-output-data- type(pi) with pj where  
                     KB-subsumes(range(s,pi),KB-range(cj,pj)),  AddAndLinkStep(cj,pj,s,pi).     
                Suggestions: add initial-input for pi with dj ∈KB-data-types(), s.t.  
                     KB-subsumes(range(s,pi ), dj). 
       d. If  the step s is not valid, create an Error.  
       Suggestions: delete s.  
IV. For each link l  <so,po,si,pi> in w: 
        a. If l is not consistent, 
              If ∃ cj ∈ KB-component-with-input-data-type(range(so,po)) ∩  
                KB-component-with-output-data-type(range(si,pi)), create a Warning. 
                Suggestions: ∀ cj ∈ KB-component-with-input-data-type(range(so,po)) ∩  
                    KB-component-with-output-data-type(range(si,pi)), InterposeStep (ci, l). 
             Otherwise, create an Error. 
                Suggestion: RemoveLink(l). 
        b. If l is Redundant, create a Warning. 
  Suggestion: RemoveLink (l). 
        c. If  l is not valid, create an Error.  
  Suggestion: RemoveLink (l). 
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Figure 5. CAT User Interface, showing on the left side a few components of the workflow and on the right 

side the errors and suggestions found automatically by the system. 
 

3.5 Example validations made by CAT 

  As the user creates a template, intermediate stages result in incorrect templates. Figure 5 shows 

example errors or defects in a workflow template, and how CAT detects them and proposes suggestions. 

Currently there are a couple of missing inputs for workflow components: UTM for UTM converter and 

Duration-Year for ERF.  There are two warnings on two output values not used in achieving desired end 

results.  The system also notices two inconsistent links that can be fixed by interposing a component: a 

link that connects Rupture Array of ERF and Rupture of IMR and a link from Velocity of CVM to VS30 

of IMR-Field.  CAT provides suggestions for the selected errors that interposing Array-Splitter can fix the 

inconsistent link problem.  Currently, multi-step fixes are also available where the user can click-through 

the presented fix steps to complete the fix. If there is no error or warning detected by CAT, the template is 

correct and can be used for workflow creation (i.e. assigning data products to input parameters) and 

execution [Gil et al., 2006].  

  Our evaluations with synthetic user mistakes and workflow defects that are generated randomly 

show that CAT detects most of the defects (238 out of 240 defects). CAT missed the two cases due to the 
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interaction between the defects. For example, when a link is removed and then a component that 

contained the link’s input parameter is also removed (i.e., the link would no longer need to supply a 

value), CAT may not detect the link had been removed.  For 87% of the defects detected, CAT generates 

direct fixes (i.e. fixes that directly undo the defects generated) [Kim et al., 2005].  Besides the interactions 

between the defects, when abstract components are introduced (by replacing existing ones with more 

abstract ones), currently CAT proposes to specialize the components using only their children and may 

not point to direct modifications to the correct components. However, sequences of suggestions to 

specialize abstract components will eventually lead to desired components.    

  CAT has been integrated into an end-to-end SCEC (Southern California Earthquake Science) grid 

workflow execution system where users can create workflow templates, specify data files using metadata 

catalog service, refine the workflows to executable forms and use a grid environment to execute 

workflows against domain specific software libraries and data sources [Maechling et al., 2005; Gil et al 

2007].  

4. KANAL: Interactive Composition of Process Models   

KANAL was built to help biologists enter complex process models in cell biology. KANAL was 

later extended to support critiquing of manually built courses of action that are process models 

of activities to be undertaken by a military unit. KANAL was developed within an end-to-end knowledge 

acquisition system called SHAKEN [Clark et al., 2001]. The resulting knowledge was used in answering 

cell biology textbook questions. Users can invoke KANAL whenever they want to validate their 

definitions of process models. 

KANAL helps users build or modify process models by detecting possible errors and pointing out 

what additional knowledge needs to be acquired and what existing knowledge needs to be modified [Kim 

and Gil, 2001].  These operations use 1) knowledge-based descriptions of components that are used in 

process models, which support reasoning about inter-dependencies between steps and links that are 

introduced and 2) assessment of partially constructed process models based on AI planning and process 

modeling techniques.   

4.1 Supporting knowledge base: representing data entities and actions  

This section introduces the supporting knowledge base and representations that we use for 

process models in biology and military process models. The current implementation of KANAL is built 

on the  KM knowledge  representation and  reasoning system.  KM provides  frame-based  language with  
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Figure 6.  A portion of KANAL Knowledge Base : Only some parts are shown for brevity. 

first-order semantics [Clark and Porter, 2005].  The Component Library defined in KM consists of 

domain independent upper ontology with about 80 semantic relations and about 500 generic concepts of 

entities and actions [Barker et al., 2001].  Each entity or action definition is a concept and consists of a 

small set of first-order logic axioms. Entity definitions specify objects, object aggregates, sequences, 

spatial entities, etc. that are involved in defining actions. In the biology domain, they include taxonomy of 

viruses, cells, nucleuses, etc. 

An action can have preconditions, effects, and roles.  The preconditions specify the conditions 

needed to be satisfied to activate the step and the effects describe changes that result from the execution 

of the step. For example, an “Enter” action has a precondition that the entities or objects to enter should 

be near the entrance of a container object. Its effect can include a location change from outside of a space 

to inside of the space and also a status change to being contained within the container. These can be 

represented as a precondition list and add/delete lists as in STRIPS operators [Fikes and Nilsson 1971]. 

Each action can have several roles. For example, in an Enter action an object can play the role of an agent 

and it is a tangible entity. Another object can play the role of the container being entered. Roles of an 

action can have their own constraints, such as: the destination of an Enter action should be inside the 

container. Some actions define how they are decomposed into several substeps. Figure 6 shows a portion 

of the knowledge base. 
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  The following shows some of the supporting KB queries that KANAL makes in validating 

process models. 

• KB-concepts(): returns a set of concepts (objects and existing process models) defined in the KB. 

• KB-preconditions(c) : returns preconditions of an action c. 

• KB-effects(c) : returns effects of an action c. 

• KB-required-roles (c): returns required roles for a concept c. 

• KB-range (c, r): returns a concept defined (or derived) as the range of role r of c.  

• KB-subsumes (c1, c2): returns true iff c1 subsumes c2  in the KB. 

• KB-specializations(c): returns subconcepts of c. 

• KB-components-with-effect (e): returns a set of components that have an effect e. 

• KB-potential-effect-of-step (c,e): returns a set of role assignments for action c that can produce an 

effect e. 

4.2 Composition of process models  

The representation of process models is consistent with standard AI planning languages and 

process ontologies, such as PDDL [Ghallab et al., 1998] and NIST’s PSL [Tissot and Gruninger, 1999]. 

In presenting the axioms about an action to the user, the raw axioms are not presented directly. Rather, the 

user sees an example of that action, i.e., a set of ground facts about computed from those axioms. A 

process model is composed of a number of steps and substeps. Each individual step is an instance 

(example) of an action defined in the knowledge base (e.g. Enter).  

The steps within a process model are connected to other steps through different kinds of links 

including:  

• decomposition links: Users can specify superstep/ substep relations. For example, an Invade step can 

have Attach, Penetrate and Take Control as its substeps, and each of these substeps can have their 

own substeps.  

• temporal links: Users can specify ordering constraints among the steps. For example, in modeling a 

virus invasion, the Penetrate step should follow the Attach step. 

• disjunctive links: There might be alternative actions for a process step, and the alternatives can be 

represented by disjunctive links. For example, the DNA of a Lambda virus can either start its 

replication right after entering a cell or be integrated with the host chromosome before the replication. 

• causal links: If the editor allows, users may specify enablement/ disablement between steps, and 

KANAL can compute the causal relationships among the steps inferred from simulation results, as 

described below. By examining the outcome of the steps and the preconditions checked by other 

steps, the user-specified causal links can be used for validating the model. 
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       Figure 7: Process model editor [Clark et al., 2001] 

User Activities for Process Model Creation 

A general description of a Penetrate step can be instantiated for the Virus invasion process by 

assigning the concept Virus to the agent role of Penetrate and the concept Eucaryotic-Plasma-Membrane 

to the object role. These role assignments cause further interdependencies in the KB, since the objects 

assigned to the roles have their own constraints and definitions that must be consistent with those of the 

process models and their steps.   

The following are the (user) actions for refining process models: 

• add a step to the process model using an action definition 

• remove an existing step 

• add/remove a link between two steps  

• add/remove a role assignment  

  Figure 7 shows the graphical editor that allows the user to specify a process model in SHAKEN. The 

design of the interface was inspired in concept maps [Novak 1998].4.3 Desirable properties of process models. 
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As with CAT, we turn to AI planning systems to derive properties that KANAL uses to validate 

process models. The properties are adapted to the process model representation and the composition steps 

used in KANAL. The properties are: 

• All the preconditions of a step should be achieved before the step is executed. 

• All the expected effects should be achieved. 

• All the steps should be ordered. 

• All the steps should be executable and they produce some effect. 

• All the expressions should be valid. 

• All the loops should be intended by the user. 

• All the links (decomposition, temporal, disjunctive) should be intended by the user. 

• All the causal relations should be intended by the user. 

For loops, links, and causal relations, the properties state that the user should have intended those 

assertions.  The purpose of those properties is to avoid that such assertions are created unintentionally as a 

side-effect of something else the user does during the creation of the process model.   

4.4 KANAL Algorithm for checking process models 

KANAL invokes KM’s simulator to generate alternative simulations of a process model. KM’s 

simulation of process models can be seen as a symbolic execution of a linearization of the process model 

using Skolem instances. KM provides a function that can execute a step in a given situation and create a 

new situation based on the effects (add/delete list) of the given step. KANAL uses this function to 

simulate the given process model and analyzes interdependencies between the conditions and effects of 

the steps, such as that the required conditions for each step are met when the step is supposed to take 

place, and that the expected effects of the overall process are in fact obtained.  KANAL also checks how 

different steps are related to each other, including their temporal ordering and causal relationships.  In the 

process, KANAL reports possible errors in the models, and generates specific suggestions to the user 

about how to fix those errors. Table 3 summarizes the checks that are made by KANAL and suggestions 

provided by the system.   They enforce the desirable properties of process models that are described 

above. 

Each action taken by the user is akin to a refinement operator in plan generation. However, while 

automatic systems can explore the space of plans systematically and guarantee that the final plans are 

valid, interactive composition requires an approach that lets the user decide what parts of the space to 

explore and that can handle invalid process models. The above checks can help relate the process models 

generated by a user to models that an automated approach could generate. Plans or process models that 

contain errors of unordered or unexecutable steps would never be generated automatically. 
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Table 3. KANAL verification checks. 

 

 

Figure 8: A missing role assignment (missing “destination” link between Move-Out-Of and Cytoplasm) is 
detected through a failed precondition of the following step. 

 

 

Checking Unachieved Preconditions 
1. Detect problem with simulation. 
(a) Collect failed step(s). 
(b) Collect unachieved preconditions of failed step. 
2. Help user fix problem. 
(a) Suggest that there are missing steps: 

- Find components in the KB  that have the effects needed as  
 preconditions by the failed step and suggest inserting one of these  
 components somewhere within the current process model before the  
 failed step. 

(b) Suggest that there are missing or incorrect ordering constraints: 
- Find steps that were executed before the failed step that may have effects  
 that undid the unachieved preconditions. 
-Find steps that follow the failed step and have effects that assert the  
 unachieved precondition and suggest inserting an ordering constraint  
 between those steps and the failed step. 
(c) Suggest modifying previous steps: 
  - Find previous steps that could have produced the needed effects and 
suggest modifying their role assignment. 
(d) Suggest modifying the step whose preconditions were not achieved. 
Checking Expected Effects 
1. Ask user to specify expected effects. 
2. Detect problem with simulation. 
(a) Collect unachieved effects from each path and record the steps in the  
 failed paths. 
3. Help user fix problem. 
(a) Suggest that there are missing steps: 
- Find components in the knowledge base that have the effects needed and  
 suggest inserting one of these components somewhere within the current    
 process model. 
(b) Suggest modifying steps: 
- Find steps that may have effects that can potentially change the role  
 values of the unachieved effects and suggest modifying those steps to  
 achieve the effects needed. 
(c) Suggest that there are missing or incorrect ordering constraints: 
- Find steps that may have effects that undid the expected effects and find   
 actions that assert the expected effects and suggest inserting an ordering  
 constraint in order to maintain the expected effect where needed. 

Checking Unordered Steps 
1. Detect problem with simulation. 
 (a) Find unordered substeps by checking interruptions in simulation and 
unreached steps. 
2. Help user fix problem 
  (a) Suggest that there are missing ordering constraints: 

- Find the first action in the unreached steps and suggest addition of  
  ordering constraints. 

Checking Unexecutable or Effectless Steps 
1. Detect problem with simulation. 

(a) assertions to be deleted by a step are not true in the situation where  
     the step is executed.  
(b) a step produces no effect, i.e., it does not delete or add any   
      assertions. 

2. Help user fix problem. 
  (a) Suggest modifying role assignments: 
     - Find the step’s roles that are assigned to wrong objects and suggest    
       modifying them.  
 (b) Suggest modifying previous steps: 
     -  If its previous steps produced assertions that are different from the  
       ones to be deleted, then suggest modifying the previous steps. 
Checking Invalid Expressions 
1. Detect problem with simulation. 
   (a) Check the truth/falsity of assertions, including the precondition tests  
       and the expected effect tests.  
   (b) Find any objects that are tested but undefined. 
2. Help user fix problem. 
 (a) Suggest modifying invalid expressions. 
 (b) Suggest modifying steps that access undefined objects (or invalid  
      expressions). 
Checking Loops 
Inform any loops detected from the simulation. 
Checking Disjunctive Branches 
Inform any disjunctive branches that are detected from the simulation. 
Checking Causal links 
Inform any causal links (how some steps generated effects that satisfied 
the preconditions of some other step) that are detected from the 
simulation. 
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Figure 9: KANAL output 

4.5 Example checks made by KANAL 

We now show how these checks are made based on knowledge-based descriptions of the 

components. The highlighted box in Figure 2 shows an example mistake made while building a model of 

a virus invading a cell.  Currently, the destination of the Move-Out-Of step is missing.  The editor in 

SHAKEN prevents users entering invalid links based on the domain and the range of the roles, but such 

missing information demands a more thorough analysis of the dependencies between the steps. KANAL 

notices this problem when it checks the precondition of the next step (Move-Into); the Viral-Nucleic-Acid 

needs to be located at the Cytoplasm in order to Move-Into the Necleus from the Cytoplasm (the origin).  

The precondition fails because the location of the Viral-Nucleic-Acid is currently unknown due to the 

missing link.  If the Move-Out-Of step had such a link, it would have made the location of the Viral-

Nucleic-Acid as the Cytoplasm, as shown in Figure 8.  For this type of problem, KANAL’s proposed 

fixes include 1) adding a new move step to make the location of the Viral-Nucleic-Acid be the Cytoplasm 

2) modifying a previous Move (Move-Out-Of) to make the destination be the Cytoplasm or 3) modifying 

the current step so that the condition no longer needs to be satisfied. (Changing ordering constraints 

KANAL Error report

KANAL Suggestions

Failed Precondition:
The location of Viral-
nucleic-acid is not the 
same as the source 
(Cytoplasm)

Suggest modifying a 
previous step: 
destination of Move-
Out-Of should be the 
same place (Cytoplasm)
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would be suggested as well if there were other steps that generated the effect.) In fact, the second 

suggestion directly points to the user’s mistake: missing destination link between Move-Out-Of and 

Eucaryotic-Cytoplasm. Figure 9 shows the KANAL report for this error. 

Besides failed preconditions and missing links, KANAL can check unnecessary links, 

unexecutable steps, effectless steps, causal links among steps, unachieved expected effects, disjunctive 

branches, and loops, as described above.   

4.6 Uses of KANAL by end users 

Developing an authoring tool that assists scientists or engineers to directly enter complex process 

models is a challenging task, and the goal of the overall team project (SHAKEN) that involved many 

researchers from different research institutes was to develop an end-to-end system that supports such 

capability.  In this study, we were able to measure usages of KANAL in building complex process models 

and the kinds of checks reported to the user. For the studies of our KA tools in the project, the 

experimenters needed to spend time and other resources preparing the experiment and analyzing the 

results for more than a year [Pool et al., 2003]. In general, unlike in some other fields in AI, evaluations 

of interactive knowledge acquisition tools for capturing procedural knowledge are very hard and rare 

[Tallis et al., 2001; Cohen et al., 1998]. First, user evaluations are very costly. In areas like machine 

learning and planning, experiments often amount to running programs repeatedly on already existing test 

sets. The evaluation of a KA tool requires that a number of subjects spend a fair amount of time doing the 

study, and for the experimenters to spend time and other resources preparing the experiment (often 

months) and analyzing the results. The Sisyphus project is an example of the issue discussed above about 

the intimidating cost of KA evaluations: the limited number of participants can be tracked back to the 

significant amount of resources required to tackle the knowledge-intensive task that was selected 

[Shadbolt et al 1999]. Second, most of the research in the field of KA concentrates on knowledge 

modeling (e.g., how a knowledge engineer models a task domain) and knowledge elicitation (e.g., 

techniques for interviewing experts). There are few efforts on developing tools for capturing complex 

procedural knowledge and only some tool developers have conducted usability studies [Tallis et al., 2001; 

Kim and Gil 2000; Tecuci et al., 2000; Pool et al., 2003]. In many cases, the results are not fully reported 

in the literature. Third, unless human experiments are carefully designed and conducted, it is hard to draw 

conclusive results from the data. Often times, the evaluations that test specific claims about a tool or 

approach are not as thorough or conclusive as we would like to see as scientists, yet these evaluations are 

very valuable and are shedding some light on topics of interest. 
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Table 4 shows the number of times KANAL was used during a sequence of two user evaluations. 

Four biologists participated in the first evaluation and three of them participated again in the second, a 

smaller scale evaluation. In both evaluations, the biologists created models of processes described in a 

cell biology textbook [Alberts et al., 1998]. The quality of the resulting knowledge base was assessed 

with a set of textbook type questions. The first row shows the number of concepts built by the biologists 

and the second row shows the number of KANAL invocations during the evaluations.  Between the two 

evaluations, it seemed that as they become more familiar with the tool, the biologists used KANAL more 

frequently (from 32% to 45% of the concepts). Note that the concepts created by the users through 

SHAKEN included very simple factual definitions that didn’t need to be checked by KANAL.  For 

example there were many simple subclass definitions, such as a definition of Cap as a subclass of DNA-

Sequence.   

Table 5 shows the number of errors and warnings reported to the users during the evaluations. As 

shown in the table, KANAL was used in performing various types of checks, including missing links, 

failed conditions, failed executions, etc.  The changes in the ratios between the two evaluations are related 

to multiple different factors.  For example, in the second evaluation, there were fewer warnings on simple 

errors like missing event links (first-event, subevent, and next event links) and unreached events. It seems 

that as the users become more experienced in building process models, they tend to make fewer such 

mistakes.  However, there were some other changes between the two evaluations.  For example, the 

Component Library has been improved over time with richer definitions of actions and this improvement 

affected the KANAL reports as well. As shown in the table, KANAL detected more failed conditions per 

0.45 0.32 Invocations  
per concept 

71 144 KANAL  
invocations 

157 449 Total # of  
concepts built 

January  
2002 Summer 

  2001   

0 0 0.01 1 Loop 
0.14 10 0.05 7 Failed expected effect 
0.08 6 0.97 139 Effectless step 
0.34 24 0.21 30 Failed execution of step 
1.56 111 0.92 133 Failed conditions 
0.73 52 0.73 105 Unnecessary ordering 
0.23 16 0.38 55 Unreached events 
0.11 8 0.26 37 Missing first-event, subevent, next-

event 
ratio Total # ratio Total # 

January 2002 Summer 2001 Error/warning Type 

Table 4: Uses of 
KANAL 

Table 5: Errors and warnings reported 
(ratio: number of errors or notes / number of  KANAL invocations) 
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invocation in the second evaluation because there were more action conditions defined in the background 

ontology which KANAL can make use of to perform more thorough checks. On the other hand, there was 

a significant reduction in the number of effectless steps as there were more effects defined for each action, 

which reduces chances that a user may define a step that doesn’t produce any effect. 

KANAL has been also used for military planning and used for critiquing manually built courses 

of action that are process models of activities to be undertaken by a military unit. A number of tests were 

run in which two users entered process models (courses of action) in a graphical tool, and tested them 

with SHAKEN and KANAL [Barker et al., 2003]. The subjects were retired Army officers with no 

computer science background. This time, they were allowed to extend existing definitions of actions in 

the background KB when they disagreed with the KANAL reports. Normally, users don’t want to change 

the general action definitions, which are quite stable, but they often wish to add more detail to an action to 

cover slightly different behavior in special cases.  For example, a combat power ratio of 3 (blue vs. red) is 

normally desired for a general military attack, but when an aviation unit attacks an armor unit, a combat 

power ratio of 0.5 is adequate. Our extension to KANAL facilitates this capability by defining a 

specialization of an existing action definition with additional preconditions and effects. There were 17 

process models tested (each of them has about 20 steps) and the users ran KANAL 74 times. KANAL 

detected 430 errors or defects in the process models [Kim and Blythe, 2003]. As the users extended 

existing definitions by creating 17 special cases of actions, they seemed to agree more with KANAL’s 

critiques.   

In summary, KANAL checks seemed useful in guiding users in creating process models and 

checking complex process models, and KANAL produced more useful reports when the knowledge base 

had richer descriptions of actions.  

5.  Underlying Principles in CAT and KANAL 

As described above, CAT and KANAL focus on different applications with different 

representations and underlying knowledge bases. Each step in KANAL’s process models can have roles 

instead of input and output data parameters.  That is, a link between an introduced object and a step 

represents how the object plays a particular role for the step. Steps in a process model can be connected 

via several kinds of links including temporal links and decomposition links. CAT workflows focus on 

data flow between computational steps and users specify the steps that are involved and link their input 

and output parameters. Also, CAT components do not have negative effects, and it doesn’t need strategies 

to protect causal links. The CAT algorithm relies on static scanning of the given workflow while KANAL 

makes use of dynamic simulation in checking process models. However, we found that the users of both 
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CAT and KANAL share similar requirements and we were able to use similar techniques in assisting 

them.  

  First of all, we can map some of CAT’s desirable properties to relevant KANAL checks.  

• Purposeful: Although KANAL doesn’t check whether there are any end results or not, expected 

effects can be used to determine whether the user specified end results can be actually achieved.  

• Grounded: KANAL doesn’t have this type of checks since there is no explicit definition of executable 

components. 

• Satisfied: This is similar to KANAL’s checks on unachieved conditions. 

• Consistent: Although KANAL’s checks on causal links are not the same as this, they can be used to 

determine whether user specified causal links are consistent with simulation results 

• Justified: KANAL’s checks on unexecutable steps find steps that are not reachable from the first step 

instead of the end results 

• Well-formed: KANAL doesn’t have to check this problem since the editor doesn’t allow any invalid 

steps or links.  

• Acyclic: This is similar to KANAL’s checks on loops in process models 

• Parsimonious: KANAL’s checks on disjunctive branches report multiple links to the same input. 

However this is not necessarily a problem in process models.  

  That is, these set of properties seem useful for checking process models and workflows that are 

authored by end users, including scientists and military officers. 

  As we mapped CAT’s desirable properties to KANAL checks above, the steps in ErrorScan in 

Table 2 can be mapped to the KANAL verification functions in Table 3.  Although CAT relies on static 

analysis of workflow templates instead of dynamic simulation and actual checks made are different, they 

share many similar checks.   For example, the KANAL’s step for checking unachieved preconditions and 

expected effects can be mapped to the ErrorScan’s step for checking unsatisfied parameters. Table 6 

summarizes some of the verification checks made by CAT and KANAL.  

In supporting the validation checks, both systems heavily rely on background knowledge 

including library of actions (or workflow components) and objects that can play certain roles in the 

process models. In general, domain ontologies and upper or middle level ontologies are commonly used 

to represent this kind of background knowledge. With this context, the tools become much more helpful 

in checking that the process model makes sense within the background knowledge that it has. 
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Table 6:  Similar verification checks made by CAT and KANAL  

  As indicated by our studies of process models that are authored by end users [Kim and Blythe 

2003, Pool et al., 2003; Maechling et al., 2005], checks made by CAT and KANAL seem useful for 

helping end users.  In particular, consistency checks on failed conditions and inconsistent links, and 

completeness checks on unnecessary ordering and unsatisfied parameters seem to cover many user errors. 

  However, users seem to need additional proactive capabilities for user assistance.  The following 

list summarizes some of these additional requirements.  

• System did not tell the users clearly enough what the system can do now and what it needs to know. 

CAT: checking workflow templates with static 

scanning 

KANAL: checking process models with dynamic 

simulation

check types

Whether there are steps 

with undefined 

components or links to 

undefined inputs/output 

parameters

Redundant links, loops

n/a

Whether the step is 

executable

Inconsistent links, 

whether an output from 

a step can be used as an 

input of another

n/a

Loops

Whether end results 

exist

Unjustified steps where 

steps are not connected 

to end results

Unsatisfied  input 

parameters

Checks

n/a

Loops

Whether there are 

disjunctive branches

n/a
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• Users need assistance in determining whether the system was drawing the kinds of inference intended. Users 

want to perform such checks regularly. 

• Users need help to keep on track: manage work in progress and remove unwanted work. 

• Users have difficulty with: 

o Starting new process models or tasks. 

o Entering complex procedural knowledge with nested steps and/or nested roles among objects 

involved. 

o Comparing and assessing similarity between authored knowledge and prior knowledge. 

o Facilitating consistency checking across user efforts. 

o Establishing confidence and competence on knowledge entered. 

  We are currently developing a front-end KA dialogue tool that supports some of these capabilities 

using a set of acquisition goals and strategies for them [Kim and Gil 2007; Gil and Kim 2002]. 

6. Related Work 

Knowledge acquisition and knowledge engineering remain challenging areas for many scientific 

computations and business-related AI applications.   Many knowledge acquisition approaches have been 

targeting knowledge engineers [Wielinga et. al., 1992; Yost 1992; Schreiber et al., 1999; Fikes et 

al.,1997], and those approaches that have been developed for end users (i.e., users who do not have 

computer science backgrounds) [Eriksson et al. 1995; Marcus and McDermott, 1989] only allow them to 

specify certain kinds of knowledge, i.e., domain-specific knowledge regarding instances and classes. 

Some systems use a variety of elicitation techniques to acquire descriptive knowledge [Clark, et al., 2001, 

Gaines and Shaw, 1993, Shadbolt and Burton, 1989], often in semi-formal formats. Recently there has 

been increasing interest in tools that enable end users to enter complex procedural knowledge. Some 

systems use rich background knowledge and graphical interfaces [Clark et al., 2001]. Other tools focus on 

detecting gaps and errors in the knowledge specified by the user [Blythe et al., 2001]. Some tools 

combine interactive dialogue approaches with domain ontologies and upper or middle level ontologies 

[Witbrock et al., 2003]. Alternative approaches apply learning and induction techniques to examples 

provided by users in a natural way as they are performing tasks [Mitchellet al.,1985, Cypher 1993, 

Bareiss et al., 1989, Lau et al., 2003]. Although these tools may be more accessible to end users, they are 

only useful in circumstances where users can provide a variety of examples. When examples are not 

readily available, we may need KA tools for direct authoring.  Our systems present a knowledge-based 

approach that uses planning techniques in order to guide users in generating complete and consistent 

process models or workflow templates.   
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Past research in validation and verification of knowledge bases addresses the detection of errors 

in rule bases [Preece and Shinghal, 1994; O’Keefe and O’Leary, 1994] or in ontologies [McGuinness et 

al., 2000; Noy et al., 2006] and has not addressed process models specifically.  

Some work on web service composition provides approaches to match and select related semantic 

web services in order to compose workflows [Sirin et al., 2003; Burstein et al., 2000, Sycara et al, 1999]. 

However, existing tools provide limited support in generating correct and complete end-to-end 

compositions, and do not address the user interaction issues raised in our applications. Existing 

approaches for composition of web services [Chen et al., 2003, McDermott 2002; Narayanan and 

McIlraith 2002; McIlraith and Son 2001; Sheshagiri, et al., 2003; Thakkar et al. 2000] use expressive 

languages and sophisticated reasoning and planning techniques to generate valid compositions of 

services. They complement our work in that they do not address user interaction issues. The Web Services 

ToolKit (WSTK) [Srivastava 2000] includes a composition engine, but it has very limited models of the 

data used by the services, which limits the support that underlying reasoners can provide. SWORD 

[Ponnekanti and Fox 2002] is a toolkit that addresses interactive service composition. However, it is 

designed for developers who have programming skills, not for the end users that our work is intended for. 

There have been some interactive approaches proposed for planning applications. PASSAT and 

similar systems [Myers 1997, Myers et al., 2002, Myers et al., 2003] take plan sketches provided by a 

user and interpret and complete the sketches using domain knowledge in terms of hierarchical task 

network (HTN) schemas. PASSAT detects errors caused by extra steps in the sketches and violated 

conditions. Our work is complementary in that it utilizes a component-based approach rather than HTN. 

The Advisable Planner and Advisable Agents frameworks [Myers 1996, Myers 2000] use grammars to 

express advice in terms that automated planners (or agents) can use, and detects conflicting advice 

provided by the user. Our approach is complementary in that these kinds of preferences could be used to 

narrow down the suggestions provided by our algorithms.  

Interactive algorithms to guide the search of solutions have used visualization techniques to 

explore the tradeoffs among solutions [Anderson et al 2000, Blythe 2002]. We do not address how to 

guide the user through the solution space, but in future work we would like our system to take a more 

proactive role in helping the user understand how their choices of components and links affect the 

solutions that will result.  

Other related work addresses the acquisition of planning knowledge. Approaches to develop tools 

to aid users to specify planning domains [Aler and Borrajo 2002, Kim and Blythe 2003, McCluskey et al., 

2003] are complementary to our work in that we assume that the specification of components is provided 

to our system, which exploits that knowledge to form the workflows. Other work looks at different 
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planning tasks from a knowledge engineering perspective [Benjamins et al., 96], where the planner 

itself is configured from problem solving methods, while our work investigates the composition of 

the workflows (or plans) themselves. Research on interactive tools to acquire planning knowledge is 

also related [Chien, 1998; Myers, 1996; Huffman and Laird, 1995], but their focus is on acquiring 

knowledge about how to generate plans instead of acquiring the specific plans themselves. TRAINS 

[Ferguson et al 95] uses dialogue-based techniques to determine the correctness and relevance of planning 

knowledge added by the user, including planning tasks and goals.  Our approach is complementary in that 

it incorporates user input into the workflow through a limited set of actions, and uses properties of 

desirable process models to follow up with the user in terms of possibly incorrect portions of it. 

Description logics have been used in various aspects of planning, but not to guide interactive 

generation of plans. CLASP used description logics to reason about planning states and actions in 

order to relate procedures by exploiting action taxonomies [Devanbu and Litman 92]. Description 

logics have also been used to guide plan generation and plan recognition by reasoning about 

subsumption of plan structures [Wellman, 1990, Alterman, 1986, Litman, 1994].  

7. Conclusions and Future Work 

  Our work has been motivated by the requirements of different KA applications including 

authoring process models in biology, manual development of military plans and composing 

computational workflows in earthquake science. Based on their requirements, we have developed two 

authoring tools, CAT and KANAL, with which users can author and check process models and 

workflows, and call on the system to provide intelligent assistance.  KANAL was driven by the needs to 

verify user entered process models in biology and to critique manually built military plans. Users of 

KANAL, including retired Army generals, wanted to assess potential flaws in the plans and process 

models, and easily understand how they could improve existing process models.  Engineers and 

earthquake scientists needed a tool with which they could compose a workflow flexibly following 

different authoring strategies, since their constraints on workflows are not pre-defined and tend to become 

more explicit while they explore different selections of components and their connections. While 

designing these tools and analyzing their problems, we have identified common requirements that the 

systems have and developed an approach to fulfill these requirements. Our work combines knowledge-

based representation of components, together with planning techniques that can track the relations and 

constraints among components, no matter the order of the user’s actions in specifying the plan or 

workflow. For KANAL we have defined a set of checks that the system performs to verify user entered 

plans. CAT has been developed more recently and defines a set of formal properties for correct workflow 

templates. The ErrorScan algorithm guides users to specify correct workflows using these properties.  
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Both CAT and KANAL are driven by AI planning techniques, and their checks are similar.  Although the 

systems support different interfaces and the interactions are driven by specific needs and system 

constraints (e.g. use of KM simulation in KANAL vs. stepwise checks in CAT), the same techniques 

seem useful for both of them. We believe that our techniques could be useful for other similar process 

model authoring problems.  

Verification of user entered workflows or process models is useful in other contexts. For 

example, users may compose workflows using editors off-line, then invoke a workflow verification to 

report problems with the workflow. This is typical in scientific environments today, where scientists use 

text editors to create workflows. There are workflow editors that provide useful graphical capabilities but 

have no comprehensive error checking facilities. Our workflow verification techniques would be a useful 

addition to these workflow editors. Another context in which workflow/plan verification would be 

beneficial is reuse, adaptation, and merging of previously existing workflows or plans. In scientific 

applications, retrieval of past successful workflows as a starting point to design new ones is 

commonplace. Our workflow verification techniques can help a scientist during the process of adapting 

these workflows to the new situations. Likewise, existing process models can be used to specify similar 

but different process models (e.g. a variation of Lambda virus invasion). Finally, workflow verification 

techniques would be useful in assisting users to develop end-to-end applications by merging previously 

existing workflows that address smaller aspects of the overall application. In merging workflows or 

process models, many inconsistencies, gaps, and overlaps may occur. Ultimately, user-guided 

composition would involve not only interactive development but also the aforementioned modalities of 

one-shot editing, retrieval and adaptation, and merging of existing workflows or process models. 

  Users may agree or disagree with the checks made by the system. Whenever there is a 

disagreement it could be because 1) the plan they built is different from what they intended, 2) the 

system’s background knowledge used to check their plans is inconsistent with the user’s knowledge, or 3) 

the analysis results are not clearly presented in the interface. As described earlier, KANAL supports a 

simple way in which the user can add more detail to an action to cover slightly different behavior in 

special cases. We are looking at other potential ways in which background knowledge can be semi-

automatically extended based on user feedback.  

  An important extension of our approach would be to guide the user through the workflow 

generation space in a systematic manner, so that the user explores each area of the search space only once. 

This would involve remembering the workflows that the user has composed, and constraining the possible 

future actions that the user can take to extend the workflow by taking into account areas of the search 

space already explored.  
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The interactive approach could provide a complementary capability to automatic techniques. For 

example, the verification results may enable integration of interactive and automatic techniques for plan 

development. After a user sketches a plan, an automated planner could fill in the details and missing 

steps. However, in order for this to work, it is necessary to ensure that errors in the plan created by a user, 

such as redundant steps or inconsistent links, are removed before an automated planner takes it and starts 

expanding it with more detail.  
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